文章编号: 0253-2239(2009)12-3433-07

# 基于柔性立体靶标的摄像机标定

孙军华 刘 震 张广军 魏振忠 江 洁

(北京航空航天大学精密光机电一体化技术教育部重点实验室,北京 100083)

**摘要** 针对大视场摄像机标定中,大尺寸靶标加工困难,小尺寸靶标标定精度不高等问题,提出一种基于柔性立体 靶标的摄像机标定方法。柔性立体靶标是由多个小平面靶标(又称子靶标)灵活组合的一种靶标形式,将多个小的 子靶标摆放在视场周边,以其中1个子靶标坐标系为基础建立柔性立体靶标坐标系。以子靶标之间位置关系不变 为约束条件,将各子靶标特征点的局部坐标统一到柔性立体靶标坐标系下,建立以重投影误差为最小的目标函数, 采用非线性优化方法得到摄像机参数的最优解。仿真和实验证明采用柔性立体靶标可以达到与相同靶标区域大 小的大平面靶标相当的标定结果。

# **Camera Calibration Based on Flexible 3D Target**

Sun Junhua Liu Zhen Zhang Guangjun Wei Zhenzhong Jiang Jie (Key Laboratory of Precision Opto-mechatronics Technology, Ministry of Education,

Beihang University, Beijing 100083, China)

**Abstract** The calibration of camera with wide field-of-view is a challenging problem because a target of large scale is hard to machine, while using target of small scale cannot satisfy the required accuracy. A camera calibration method based on flexible three-dimensional(3D) target is proposed to solve the calibration problem of camera with wide field-of-view. Flexible 3D target is a target consisting of several planar targets, called sub-targets, which are placed flexibly according to the range of the camera's view-field. The coordinate frame of the flexible 3D target is constructed based on a sub-target. By using the invariance of the relative positions between sub-targets in the flexible 3D target. By minimizing the re-projection error of feature points on all the sub-targets, the maximum likelihood estimate of the camera parameters can be obtained. Synthetic and experiments show that the accuracy of the proposed calibration method using a big planar target whose area is similar to that of the flexible 3D target.

Key words machine vision; camera calibration; wide field-of-view; flexible 3D target; small target

# 1 引 言

摄像机模型是物体空间和图像平面的一种映射 关系。摄像机标定过程就是确定摄像机模型中各参 数的过程。对于以摄像机为主要测量设备的视觉测 量系统来说,摄像机标定结果直接影响着视觉测量 系统的精度。

摄像机标定一般可分为传统标定方法和自标定 方法两类。传统标定方法依靠形状与尺寸已知的靶 标,求取摄像机模型的内部参数和外部参数,比较典型的有:基于三维靶标的标定方法<sup>[1,2]</sup>。根据三维靶标特征点与图像点的对应关系求解摄像机内部参数,这种方法的优点是标定结果精度高,缺点是三维靶标存在自身遮挡问题,并且加工难度大,费用高; 基于二维靶标的标定方法<sup>[3~5]</sup>,标定中摄像机与靶标都可以自由移动,不需要知道运动参数,这种方法标定过程灵活,可以获得高质量的靶标图像,标定精

收稿日期: 2009-01-16; 收到修改稿日期: 2009-03-02

基金项目:国家自然科学基金(50727502,50805006)资助课题。

作者简介:孙军华(1975-),男,副教授,主要从事光电精密测试、机器视觉等方面的研究。E-mail: sjh@buaa.edu.cn

光

报

度较高,缺点是靶标较小时,标定结果精度较低;基于 一维靶标的标定方法<sup>[6~8]</sup>,利用一维靶标特征点与图 像点之间的对应关系以及一维靶标点共线的特点实 现摄像机标定,有一定局限性<sup>[8~10]</sup>,无法完成单摄像 机标定,因此该方法目前应用较少。自标定方法不需 要靶标,仅依靠多幅图像对应点之间关系求解摄像机 内部参数<sup>[11~15]</sup>,由于不需要靶标,只需要建立图像对 应点,所以这种标定方法灵活方便,它的缺点是稳健 性差,主要应用在精度要求不高的场合。

Zhang Zhengyou<sup>[6]</sup>提出的二维靶标标定方法 简单实用、精度较高,目前被广泛应用,它的缺点是 随着靶标面积在视场中所占比例的逐渐变小,标定 结果急剧恶化。这主要是因为小靶标的每个摆放位 置只能提供小范围的特征点数据,虽然可以通过增 加小靶标摆放次数增加特征点数量,但每个摆放位 置的特征点数据之间没有联系和约束,因此标定结 果不能真实反映整个视场空间与像平面之间的透视 投影关系。尤其是摄像机畸变系数求解时,需要尽 量分布空间较大的特征点数据,如果靶标较小,摄像 机畸变系数的标定结果有度降低。

针对大视场摄像机标定困难的问题,提出一种 采用柔性立体靶标的摄像机标定方法。该方法根据 摄像机视场范围将多个小平面靶标灵活分布在视场 周边,尽量获得大的靶标区域。在标定过程中,将各 小平面靶标之间的位置关系作为优化变量加入到以 重投影误差为最小的目标函数中,通过非线性优化 方法精确求解摄像机参数。

# 2 摄像机模型

如图 1 所示,π<sub>c</sub> 为摄像机图像平面,Ouv 为图 像坐标系,π<sub>n</sub> 为归一化图像平面,O<sub>n</sub>x<sub>n</sub>y<sub>n</sub> 为归一化 图像坐标系。设空间点 P 在世界坐标系 O<sub>w</sub>x<sub>w</sub>y<sub>w</sub>z<sub>w</sub> 下的齐次坐标为 **P**<sub>w</sub>,在摄像机坐标系 O<sub>c</sub>x<sub>c</sub>y<sub>c</sub>z<sub>c</sub> 下的 齐次坐标为 **P**<sub>c</sub>,在图像坐标系 Ouv 下投影点 P<sub>c</sub> 的无



图 1 摄像机模型 Fig.1 Camera model

畸变图像齐次坐标为  $P_u = [u, v, 1]^T$ , 在归一化图 像坐标系  $O_n x_n y_n$  下投影点  $P_n$  的归一化图像齐次坐 标为 $P_n = [x_n, y_n, 1]^T$ 。

根据摄像机透视投影模型可得

 $ρ P_u = ρ A P_n = A [I 0] P_e = A [R t] P_w$  (1) 其中 ρ 为比例系数, R, t 表示世界坐标系到摄像机 坐标系的旋转矩阵和平移矢量, A 为摄像机内参矩 阵,具体表示为

$$\mathbf{A} = \begin{bmatrix} a_x & \boldsymbol{\gamma} & \boldsymbol{u}_0 \\ 0 & a_y & \boldsymbol{v}_0 \\ 0 & 0 & 1 \end{bmatrix}.$$
(2)

式中 $a_x, a_y$ 分别为图像坐标系u轴、v轴方向上的有效焦距, $u_0, v_0$ 是摄像机主点坐标, $\gamma$ 为图像坐标系u轴与v轴的不垂直因子。

实际摄像机成像系统中往往存在畸变。只考虑 径向 畸 变,设  $P_c$  的 带 畸 变 图 像 齐 次 坐 标 为  $P_d = [u_d, v_d, 1]^T, P_d 与 P_u$ 之间的关系可表示为

$$\begin{cases} u_{d} = u + (u - u_{0})(k_{1}r^{2} + k_{2}r^{4}), \\ v_{d} = v + (v - v_{0})(k_{1}r^{2} + k_{2}r^{4}). \end{cases}$$
(3)

式中 $r = \sqrt{x_n^2 + y_n^2}$ ,  $k_1$ ,  $k_2$  为径向畸变系数。

## 3 标定原理

将多个平面靶标(称为子靶标)根据摄像机视场范 围灵活摆放,由于它们之间的位置关系不变,将它们考 虑为一个靶标整体,就构成了一种柔性立体靶标。

图 2 即为一个柔性立体靶标。以其中任意一个 子靶标坐标系为基础,建立柔性立体靶标坐标系  $O_{T}x_{T}y_{T}z_{T}$ 。 $R_{ii,T}$ , $t_{ii,T}$ ( $i = 2, \dots, n$ )为各子靶标坐标 系  $O_{i}x_{i}y_{i}z_{i}$ ( $i = 2, \dots, n$ )到柔性立体靶标坐标系的 旋转矩阵与平移矢量。柔性立体靶标中子靶标总个 数为 n。



图 2 柔性立体靶标示意图 Fig. 2 Flexible 3D target 设 **P**<sub>ii</sub>为第 *i* 子靶标上特征点 *P*<sub>i</sub> 在子靶标坐标 系下齐次坐标, **P**<sub>i</sub> , 力 *P*<sub>i</sub> 在柔性立体靶标坐标系下

齐次坐标,  $\tilde{P}_{ii}$ 和  $P_{ii}$ 的变换关系为

$$\widetilde{\boldsymbol{P}}_{ti} = \begin{bmatrix} \boldsymbol{R}_{ti,T} & \boldsymbol{t}_{ti,T} \end{bmatrix} \boldsymbol{P}_{ti}.$$
(4)

柔性立体靶标通过 **R**<sub>*i*,**T**</sub>, *t*<sub>*i*,**T**</sub>将多个不相关的子 靶标紧密的联系在一起,形成一个大的靶标区域,以 达到代替大靶标的效果。

根据摄像机视场范围,将多个小平面靶标摆放 在视场周边,生成一个尽量大的靶标区域。摄像机 拍摄柔性立体靶标多次。求取子靶标平面与摄像机 像平面的单应矩阵 H,根据单应矩阵 H 求取摄像机 参数。计算柔性立体靶标中的 R<sub>i,T</sub>,t<sub>ii,T</sub>。建立以重 投影误差为最小的目标函数,采用非线性优化方法 计算摄像机参数的最优解,就完成了摄像机标定。

#### 3.1 求解子靶标平面与像平面之间的单应矩阵

设  $P_{ui}$ 为  $P_i$  在摄像机图像坐标系下的齐次坐标, $R_{ui,c}$ , $t_{ui,c}$ 为子靶标坐标系  $O_i x_i y_i z_i$  到摄像机坐标系  $O_c x_c y_c z_c$  的旋转矩阵和平移矢量,则  $P_{ui}$ 与  $P_{ui}$ 的 变换关系为

 $\rho_1 \mathbf{P}_{ui} = \mathbf{A} \begin{bmatrix} \mathbf{r}_1 & \mathbf{r}_2 & \mathbf{t}_{ui,c} \end{bmatrix} \mathbf{P}_{ui} = \mathbf{H} \mathbf{P}_{ui}, \quad (5)$ 其中  $\mathbf{r}_1, \mathbf{r}_2 \Rightarrow \mathbf{R}_{ui,c}$ 的第 1,2 列,  $\mathbf{H} = \begin{bmatrix} \mathbf{h}_1 & \mathbf{h}_2 & \mathbf{h}_3 \end{bmatrix}$ 为子 靶标平面到摄像机像平面间的单应矩阵,  $\mathbf{h}_k$  (k = 1, 2, 3)为  $\mathbf{H}$ 的第 k 列。

#### 3.2 求解摄像机参数

根据旋转矩阵  $\mathbf{R}_{u,c}$ 的正交性( $\mathbf{r}_1^{\mathsf{T}}\mathbf{r}_2 = 0, \mathbf{r}_1^{\mathsf{T}}\mathbf{r}_1 = \mathbf{r}_2^{\mathsf{T}}\mathbf{r}_2$ )可得到两个基本方程

$$\begin{cases} \boldsymbol{h}_{1}^{\mathrm{T}}\boldsymbol{A}^{-\mathrm{T}}\boldsymbol{A}^{-1}\boldsymbol{h}_{2} = 0, \\ \boldsymbol{h}_{1}^{\mathrm{T}}\boldsymbol{A}^{-\mathrm{T}}\boldsymbol{A}^{-1}\boldsymbol{h}_{1} = \boldsymbol{h}_{2}^{\mathrm{T}}\boldsymbol{A}^{-\mathrm{T}}\boldsymbol{A}^{-1}\boldsymbol{h}_{2}. \end{cases}$$
(6)

ş

$$\boldsymbol{B} = \boldsymbol{A}^{-\mathrm{T}} \boldsymbol{A}^{-1} = \begin{bmatrix} B_{11} & B_{12} & B_{13} \\ B_{12} & B_{22} & B_{23} \\ B_{13} & B_{23} & B_{33} \end{bmatrix}, \quad (7)$$

由于 B 是对称矩阵,可设一个六维向量为

$$\boldsymbol{b} = (B_{11}, B_{12}, B_{22}, B_{13}, B_{23}, B_{33})^{\mathrm{T}},$$
 (8)  
因此可以将(6)式写成关于  $\boldsymbol{b}$  为未知数的齐次方程  
 $\boldsymbol{b} = 0.$  (9)

其中v为2×6的矩阵。

如果摄像机多个拍摄位置共有 n<sub>c</sub> 个子靶标,将 n<sub>c</sub> 个这样的方程组叠加起来,可得

$$\boldsymbol{V}\boldsymbol{b}=\boldsymbol{0}.$$

其中V为1个 $2n_c \times 6$ 的矩阵。如果 $n_c \ge 3$ ,通过对矩阵V进行奇异值分解(SVD)求解出b。

根据(10)式,采用 Cholesky 矩阵分解算法求解 出 A<sup>-1</sup>,求逆得到 A。其中子靶标坐标系与摄像机 坐标系的变换关系可以相应求得<sup>[2,16]</sup>。

3.3 确定 **R**<sub>ti,T</sub>, **t**<sub>ti,T</sub>

建立柔性立体靶标的关键是确定柔性立体靶标 中各子靶标坐标系到柔性立体靶标坐标系的位置 关系。

在摄像机第 j 个拍摄位置, **R**<sub>T(j),e</sub>, **t**<sub>T(j),e</sub>为柔性 立体靶标坐标系到摄像机坐标系的旋转矩阵和平移 矢量, **R**<sub>u(j),e</sub>, **t**<sub>u(j),e</sub>为第 i 个子靶标坐标系到摄像机 坐标系的旋转矩阵和平移矢量。根据第 3.2 节计算 结果, 以摄像机坐标系为中介, 求解出各子靶标坐标 系到柔性立体靶标坐标系的 **R**<sub>u,T</sub>, **t**<sub>u,T</sub>, **c**<sub>u,T</sub>

$$\begin{cases} \boldsymbol{R}_{ti,T} = [\boldsymbol{R}_{T(j),c}]^{-1} \boldsymbol{R}_{ti(j),c}, \\ \boldsymbol{t}_{ti,T} = [\boldsymbol{R}_{T(j),c}]^{-1} [\boldsymbol{t}_{ti(j),c} - \boldsymbol{t}_{T(j),c}]. \end{cases} \quad (i = 2, \cdots, n)$$

$$(11)$$

### 3.4 非线性优化

在摄像机第 j 个拍摄位置, 子靶标 i 中第 k 个特 征点在子靶标 i 坐标系下齐次坐标为  $P_{u,j,k}$ , 在柔性 立体靶标系下齐次坐标为  $\tilde{P}_{u,j,k}$ , 在图像坐标下的 重投影图像齐次坐标为  $\tilde{P}_{u,j,k}$ ,  $\tilde{P}_{d,j,k}$  为其加入镜头 畸变的重投影图像齐次坐标。 $\tilde{P}_{u,j,k}$  与  $P_{d,j,k}$  的变 换关系见(3)式。根据摄像机模型可得

$$ho_1 \, \widetilde{\boldsymbol{P}}_{\mathrm{u}i,j,k} = \boldsymbol{A} \begin{bmatrix} \boldsymbol{R}_{\mathrm{T}(j),\mathrm{c}} & \boldsymbol{t}_{\mathrm{T}(j),\mathrm{c}} \end{bmatrix} \widetilde{\boldsymbol{P}}_{\mathrm{u}i,j,k} =$$

 $\boldsymbol{A} \begin{bmatrix} \boldsymbol{R}_{\mathrm{T}(j),\mathrm{c}} & \boldsymbol{t}_{\mathrm{T}(j),\mathrm{c}} \end{bmatrix} \begin{bmatrix} \boldsymbol{R}_{\mathrm{ti},\mathrm{T}} & \boldsymbol{t}_{\mathrm{ti},\mathrm{T}} \end{bmatrix} \boldsymbol{P}_{\mathrm{ti},j,k}.$ (12)

为了得到高精度的标定结果,将各子靶特征点的局部坐标通过(4)式全部转换为柔性立体靶标坐标系下的坐标,以此得到大空间范围的特征点数据。 假设图像噪声服从零均值的高斯分布且独立分布, 建立以重投影误差为最小的目标函数

$$f(a) = \min \sum_{j=1}^{m} \sum_{i=1}^{n} \sum_{k=1}^{i} d(\mathbf{P}_{di,j,k}, \widetilde{\mathbf{P}}_{di,j,k})^{2}, (13)$$

其中 $a = (A, k_1, k_2, R_{u,T}, t_{u,T}, R_{T(j),e}, t_{T(j),e}), n$ 为柔 性立体靶标中子靶标个数, m 为摄像机拍摄次数, t为子靶标i中特征点个数。

采用非线性优化方法(如 Levenberg-Marquardt) 即可得到 a 在最大似然意义下的最优解。

#### 4 实验结果

#### 4.1 仿真实验

摄相机焦距为 55 mm,图像大小为 4368 pixel× 2912 pixel,视场为 2000 mm×1350 mm,工作距离 为 3000 mm。摄像机内部参数  $a_x = 6710$ ,  $a_y = 6710, \gamma = 0, u_0 = 2184, v_0 = 1456, k_1 = 0.14$ ,  $k_2 = 0.17$ 。

4.1.1 柔性立体靶标所占区域对标定结果的影响

柔性立体靶标的最大特点是可以根据视场情况,灵活确定子靶标位置,形成不同大小的靶标区

报

域。下面分析在子靶标面积大小、数量均相同的前 提下,靶标区域大小对摄像机标定结果的影响。

设定柔性立体靶标由 4 个子靶标构成,子靶标 特征点个数为 6×6,特征点横纵向间距为 25 mm。 柔性立体靶标中的 4 个靶标构成一个正方形靶标区 域,将 靶标 区域 在横 纵 方 向上 所 占 空间 L 从 200 mm变化到 1000 mm,摄像机拍摄 10 个位置,在 图像上加均值为 0, $\sigma = 0.1$  pixel 的高斯噪声,迭代 100 次。仿真结果如图 3 所示。



# 图 3 柔性立体靶标横纵向大小对标定结果的影响 Fig. 3 Calibration results with flexible 3D target of different sizes

由图 3 可见,多个小靶标所形成的靶标区域越 大,标定结果越好,反之亦然。这主要是因为扩大子 靶标间距,可以很直接的扩大柔性立体靶标在摄像 机视场范围内的空间区域,因此标定结果也就更接 近真实值。这就进一步印证了通过 **R**<sub>u,T</sub>,**t**<sub>u,T</sub>将各子 靶标紧密联系在一起,形成一个大的靶标区域的有 效性。因此在摄像机标定时,应尽量将子靶标摆放 在摄像机视场的四周,形成一个大的靶标区域。

4.1.2 子靶标面积大小对标定结果的影响

设定柔性立体靶标有 4 个子靶标,形成一个 1000 mm×1000 mm 的靶标区域,子靶标特征点个 数为 6×6,子靶标特征点横纵向间距  $\Delta l$  从 25 mm 变化到 85 mm,将柔性立体靶标在摄像机前合适位 置摆放 10 次。为了进一步分析对比,采用一个特征 点个数为 10×10,特征点横纵向间距从 25 mm 变 化到 85 mm 的单一靶标,将平面靶标在摄像机前合 适位置摆放 20 次,采用张方法对摄像机进行标定。在图像上加均值为 0,  $\sigma = 0.1$  pixel 的高斯噪声,迭 代 100 次,具体仿真结果如图 4 所示。

在柔性立体靶标区域大小不变的前提下,随着 子靶标面积的减小,摄像机标定结果基本没变。而





采用单一靶标通过张方法进行摄像机标定时,靶标 面积对标定结果影响很大。当靶标面积较小时,通 过张方法标定摄像机效果欠佳。

由分析可知改变柔性立体靶标区域大小,也就 是改变子靶标之间的距离,对摄像机标定结果影响 较大,随着柔性立体靶标区域的增加,标定结果越 好,反之亦然;在柔性立体靶标区域大小不变的前提 下,改变子靶标面积对最后标定结果影响不大;采用 单一靶标,通过张方法标定摄像机,随着靶标面积的 减小标定结果急剧恶化。

4.1.3 对比仿真实验

为了证明采用柔性立体靶标标定摄像机的优越 性,进行三组对比仿真实验。第一组采用柔性立体 靶标根据介绍的方法标定摄像机,柔性立体靶标中 有 4 个子靶标,子靶标特征点个数为 6×6,特征点 横纵向间距为 25 mm,整个柔性立体靶标区域为 1000 mm×1000 mm,4 个子靶标分布在靶标区域的 4个角上;第二组采用大靶标,通过张方法标定摄像 机,大靶标特征点个数为10×10,特征点横纵向间 距为100 mm;第三组采用与柔性立体靶标中子靶 标面积相近的小靶标,通过张方法标定摄像机,小靶 标特征点个数为10×10,特征点横纵向间距为 15 mm。前两组实验靶标摆放位置数为10次,第三 组靶标摆放位置数为30次。在图像上加均值为0,  $\sigma = 0.1 \sim 1$  pixel 的高斯噪声,迭代 100 次。具体仿 真结果如图 5~图 7,采用柔性立体靶标和采用大靶 标的标定结果相近,远好于采用小靶标,同时三种方 法的标定残差相同。

综合分析以上三组对比实验结果可知,柔性立 体靶标提供的是大视场范围的,相互之间有约束关



# 图 5 柔性立体靶标与大靶标标定结果对比图







flexible 3D target and small target





#### three methods

系的三维数据,大靶标提供的是大面积的二维数据, 两者都能提供大视场范围的特征点数据。因此通过 这些特征点数据所得到的摄像机内部参数更能代表 视场空间与摄像机平面之间的透视变换关系。而在 第三组实验中小靶标的摆放次数虽然是前两组实验 靶标摆放次数的三倍,同时也尽量在整个摄像机视 场空间范围内均匀分布,以保证特征点的数量和分 布与前两组基本一致,但标定结果却与前两组相比 要差很多。这主要因为小靶标每个摆放位置所提供 的特征点数据分布范围较小,并且不同摆放位置的 特征点数据没有联系和约束。尤其是在求解摄像机 畸变系数时,特征点应尽量大的分布在视场空间中, 而小靶标每个摆放位置只能提供小范围的二维数 据,导致畸变系数标定精度不高,所以尽管三种方法 的标定残差基本相同,但采用小靶标的标定结果与 前两种方法相比精度要低。

#### 4.2 实验

实验采用一台配有 50 mm 镜头的 Canon 5D 数 码摄像机,图像分辨率为 4369 pixel×2912 piexl。 摄像机视场为 1100 mm×900 mm,工作距离为 1800 mm 左右。如图 8 所示,柔性立体靶标由 4 个 子靶标组成的(子靶标特征点个数为 10×10,特征 点间距为 10.3 mm)。如图 9 所示,大靶标特征点 个数为 12×10,特征点间距为 27.3 mm。



图 8 柔性立体靶标图像 Fig. 8 Image of the flexible 3D target



图 9 大靶标图像 Fig. 9 Image of the large target

分别进行三组实验:第一组实验采用大靶标,通 过张方法标定摄像机。第二组实验采用柔性立体靶 标通过本文中介绍的标定方法标定摄像机。前两组 实验,摄像机在不同位置拍摄 10 次。第三组实验采 用与柔性立体靶标中子靶标面积相同的小靶标,通 过文献[6]的方法标定摄像机。摄像机拍摄小靶标 30次。为了更直观的理解,将摄像机内参矩阵 A 中 的γ用图像坐标系之间的夹角θ来表示。

表1为三组实物实验的实验结果。采用大靶标 的标定结果与采用柔性立体靶标的标定结果接近, 与采用小靶标的标定结果相差较远。在前两组中, 柔性立体靶标所占区域与大靶标面积大致相同,结 果证明采用柔性立体靶标可以达到与相同靶标区域 大小的大靶标相当的标定结果,同时也证明了将小 靶标组合起来构成一个大靶标区域以此提高摄像机 标定精度的可行性。第三组尽管靶标摆放次数是前 两组的三倍,但标定结果较差。采用小靶标标定摄 像机时,单纯通过增加靶标摆放次数并不能提高摄 像机标定精度。实物实验结果进一步印证了仿真实 验结果,证明了采用柔性立体靶标标定大视场摄像 机的可行性。

表 1 实验标定结果 Table 1 Calibration result of camera

|                                                                   | $a_x$     | $a_y$     | $u_0$     | $v_0$     | $k_1$ | $k_2$  | θ       | Residual<br>error /pixel |
|-------------------------------------------------------------------|-----------|-----------|-----------|-----------|-------|--------|---------|--------------------------|
| Large target                                                      | 6 708.379 | 6 730.256 | 2 224.040 | 1 443.867 | 0.143 | 0.167  | 90.044° | 0.127                    |
| Flexible 3D target                                                | 6 710.677 | 6 710.748 | 2 224.786 | 1 447.538 | 0.148 | 0.133  | 90.018° |                          |
| Relative errors between flexible 3D target and large target $/\%$ | 0.034     | 0.290     | 0.034     | 0.254     | 3.497 | 20.359 | 0.029   | 0.150                    |
| Small target                                                      | 6 637.459 | 6 642.095 | 2 216.371 | 1 450.978 | 0.151 | 0.092  | 90.040° |                          |
| Relative errors between small target and large target / ½         | 1.057     | 1.310     | 0.345     | 0.492     | 5.594 | 44.910 | 0.004   | 0.105                    |

# 5 结 论

提出一种基于柔性立体靶标的摄像机标定方 法。该方法将多个小平面靶标根据摄像机视场范围 灵活摆放组合在一起,以各小平面靶标之间位置关 系不变为约束条件,将所有靶标特征点坐标统一到 柔性立体靶标坐标系下,从而获得大空间范围的特 征点数据,进而提高摄像机标定精度。该方法标定 精度高。在大视场摄像机标定时,由于无法加工一 个与摄像机视场相符合的大靶标,只能使用小靶标。 仿真和实物实验都证明采用柔性立体靶标可以达到 与相同靶标区域大小的大靶标相当的标定结果,明 显优于采用小靶标的标定结果。因此相对于小靶 标,采用柔性立体靶标可以取得更高的测量精度。 子靶标尺寸较小,加工方便,标定成本低。但由于小 平面靶标较多,所以提取靶标特征点比较费时,如果 采用靶标特征点自动提取方法可以提高标定效率。

#### 参考文献

 Shen Yehu, Liu Jilin, Du Xin. Simultaneous three-Dimensional Environment Reconstruction and localization based on monocular vision[J]. Acta Optica Sinica, 2008, 28(5): 907~914 沈晔湖,刘济林,杜 歆. 单目视觉的同时三维场景构建和定位

算法[J]. 光学学报, 2008, 28(5): 907~914

2 Lei Yanzhang, Zhao Huijie, Jiang Hongzhi. A three 2 dimensionalmeasurement met hod by combining binocular and monocular vision systems [J]. Acta Optica Sinica, 2008, **28**(7): 1338~1342

雷彦章,赵慧洁,姜宏志.一种单双目视觉系统结合的三维测量 方法[J]. 光学学报,2008,28(7):1338~1342

3 Xu Qiaoyu, Che Rensheng. Study on single camera simulating stereo vision measurement technology [J]. Acta Optica Sinica, 2008, 28(11): 2181~2186

徐巧玉,车仁生.基于光学测棒的立体视觉坐标测量系统的研究 [J].光学学报,2008,**28**(11):2181~2186

- 4 R. Y. Tsai. A versatile camera calibration technique for highaccuracy 3D machine vision metrology using off-the-shelf TV camera and lenses [J]. *IEEE J. Robotics and Automation*, 1987, RA-3, (4): 323~344
- 5 J. Y. Weng, P. Cohen, M. Herniou. Camera calibration with distortion model and accuracy evaluation [J]. *IEEE Transactions* on Pattern Analysis and Machine Intelligence, 1992, 14(10): 965~980
- 6 Zhang Zhengyou. A flexible new technique for camera calibration [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, **22**(11): 1330~1334
- 7 X. Q. Meng, H. Li, Z. Y. Hu. A new easy camera calibration technique based on circular points [J]. Proceedings of the 11th British Machine Vision Conference, 2000, 496~505
- 8 Zhang Zhengyou. Camera calibration with one-dimensional objects [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(7): 892~899
- 9 Wu Fuchao, Hu Zhanyi, Zhu Haijiang. Camera calibration with moving one-dimensional objects [J]. Pattern Recognition, 2005, 38(5): 755~765
- 10 Wang Liang, Wu Fuchano. Multi-camera calibration based on 1D calibration object [J]. Acta Automation Sinica, 2007, 33(3): 225~231

王 亮,吴福朝. 基于一维标定物的多摄像机标定[J]. 自动化学 报,2007,**33**(3): 225~231

11 S. J. Maybank, O. D. Faugeras. A theory of self-calibration of a moving camera [J]. International J. Computer Vision, 1992, **8**(2): 123~151

- 12 R. Hartley. Estimation of relative camera positions for uncalibrated cameras [J]. Proceedings of the European Conference on Computer Vision, 1992, 579~587
- 13 M. Pollefeys, L. Van Gool. A stratified app roach tometric selfcalibration [J]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 1997, 407~412
- 14 R. Hartley, L. DeAgapite, E. Hayman et al.. Camera calibration and search for infinity[J]. Proceedings of the Seventh

IEEE International Conference on Computer Vision, 1999,  $510\!\sim\!517$ 

- 15 A. Heyden, D. Q. Huynh. Auto-calibration via the absolute quadric and scene constraints [J]. Proceedings of the 16th International Conference on Pattern Recognition, 2002, 2: 631~634
- 16 Zhang Guangjun. Machine vision [M]. Beijing: Science press, 2005

张广军. 机器视觉[M]. 北京:科学出版社, 2005